近些年来,人工智能(AI)技术的迅猛发展和广泛应用,因其很多方面表现超过人类而备受关注。不过,中国科学院自动化研究所(中科院自动化所)团队最新完成的一项研究发现,基于人工智能的神经网络和深度学习模型对幻觉轮廓“视而不见”,人类与人工智能的“角逐”在幻觉认知上“扳回一局”。
中新社7日报道,受人类和生物视觉系统中广泛存在的幻觉轮廓现象启发,中科院自动化所曾毅研究团队提出一种将机器学习视觉数据集转换成幻觉轮廓样本的方法,量化测量当前的深度学习模型对幻觉轮廓识别能力,实验结果证明,从经典的到最先进的深度神经网络都难以像人一样具有较好的幻觉轮廓识别能力,即使是当前最先进的深度学习算法在交错光栅效应(幻觉识别能力之一)的识别上也与人类水平相距甚远。
2022年11月19日第6届中国-南亚博览会暨第26届中国昆明进出口商品交易会在云南省昆明市开幕。图为参展商与智能机器人互动。(图片来源:中新社)
这项人工智能与人类在幻觉轮廓方面尚有显著认知差距的重要研究成果论文,近日在细胞出版社旗下专业学术期刊《模式》(Patterns)上发表。该研究表明,目前,人类的视觉系统在幻觉认知问题上具有高度鲁棒性(也称稳健性,一般指在异常和危险情况下系统自适应能力强健稳定),基于人工智能的深度学习系统与生物视觉系统相比仍然存在根本性缺陷。
论文通讯作者、中科院自动化所类脑认知智能研究组负责人曾毅研究员介绍说,幻觉轮廓是认知心理学中经典的幻觉现象。独立进化的视觉系统中普遍存在幻觉轮廓感知能力,表明它在生物视觉处理中具有基础和关键的作用,因此,幻觉轮廓感知也应该是人工智能视觉系统所必须具备的能力。
本次研究提出一种名为交错光栅扭曲的图像干扰方法,作为量化神经网络模型幻觉轮廓感知能力的工具。对于深度学习模型,这项研究训练全连接网络和卷积网络,收集了109种公开可用的预训练模型。同时,研究也招募了24名人类受试者,评估不同的参数设置下,人类的幻觉轮廓感知能力及其对数字和图像识别的影响。
论文第一作者、中科院自动化所类脑认知智能研究组工程师范津宇说,这项研究结合认知科学和人工智能,提出将传统机器视觉数据集转换成认知科学中的交错光栅幻觉图像,首次对大量的公开预训练神经网络模型的幻觉轮廓感知能力进行量化测量,并从神经元动力学和行为学两个角度,检验深度学习和神经网络模型对幻觉轮廓的感知。
曾毅总结称,本项研究最大的特点是从认知科学的角度检验和部分重新审视了当前看似成功的人工神经网络模型,并且证明人工神经网络模型与人脑视觉处理过程仍然存在着很大差距,这还只是人工智能与人类认知显著距离的“冰山一角”,大脑运作的机理和智能的本质将继续启发人工智能,特别是神经网络的研究。
“如果想从本质上取得突破,人工智能需要借鉴并受自然演化、脑与心智的启发,建立智能的理论体系,这样的人工智能才会有长远的未来。”曾毅说。(完)